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WHEN DO TWO BANACH SPACES 
HAVE ISOMETRICALLY ISOMORPHIC 

NONSTANDARD HULLS?* 

BY 

C. WARD H E N S O N  

ABSTRACT 

The answer to the title question is given in terms of the elementary properties 
of Banach spaces regarded as structures for a certain first-order language. The 
same question for Banach space ultrapowers is also considered. The connec- 
tion between nonstandard hulls and Banach space ultrapowers derives in part 
from the following fact, of  independent  interest in nonstandard analysis: for 
each cardinal number ~ there exist ultrapower enlargements which are 
K-saturated and which have the K-isomorphism property. 

The basic first-order language L used here has as its nonlogical symbols one 

binary function symbol + and two unary predicate symbols P and Q. We 

regard a Banach space E (with norm p) as an L-structure by taking + ~ to be 

the vector addition on E and by setting 

Pc = {x I o(x)  <= l} 

QE = {x I p(x)_-> 1}. 

The criterion for the existence of isometrically isomorphic nonstandard hulls is 

given as follows: 

THEOREM 1. The following conditions are equivalent for Banach spaces E, F 

over the scalar field o[ real numbers : 

(i) E and F have isometrically isomorphic nonstandard hulls. 

(ii) Them is a Banach space H such that any positive sentence o i L  which is 

true in E or in F is also true in H. 
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Moreover, if E and F satisfy condition (ii) and their nonstandard hulls are 

constructed using any •,-saturated enlargement which has the l~,-isomorphism 

property [3], then those two nonstandard hulls must be isometrically isomor- 

phic (see Theorem 2). 

An important fact, which is used in the proof of Theorem I, is that any 

positive sentence true in E must be true in every nonstandard hull of E. This is 

somewhat surprising, since each nonstandard hull of E is constructed from an 

elementary extension of E by first taking a substructure and only then taking a 

homomorphic image. 

We also prove the analogue of Theorem 1 for Banach space ultrapowers (in 

the sense of [8]). In part, our proof depends on the following result which is of 

technical interest itself and which provides for a connection between nonstan- 

dard hulls and Banach space ultrapowers: For each set theoretical structure 

of nonstandard analysis and each cardinal number K, there is an ultrapower 
enlargement of ,ff with the K-isomorphism property [3]. This fact is a 

straightforward consequence of the difficult ultrafilter construction given by S. 

Shelah in [13]. An interesting consequence of our discussion of Banach space 

ultraproducts is a Compactness Theorem for sets of positive formulas in L and 

Banach space models (Theorem 5). It follows from this result that E and F 

satisfy condition (ii) of Theorem I if for each positive sentence or, true in E and 

each positive sentence tr: true in F, there is a Banach space H in which both o'z 

and tr2 are true. 

While the results in this paper were motivated by a question in nonstandard 

analysis, they suggest the fruitfulness of a general study of Banach spaces as 

topological structures, as part of the emerging subject of topological model 

theory which was initiated by Abraham Robinson in [12]. Some results in this 

direction will be presented in [4]. Also, Krivine and Stern have treated Banach 

spaces as structures for certain special formal languages in [9] [15], with 

emphasis on the application of model theoretic methods within Banach space 

theory. 

I. Prel iminaries  

The notation and ideas in logic or model theory which are used here can be 

found in ill and in [14]. The basic facts from nonstandard analysis are 

contained in [101 and in [I 1]. Recall that a formula of the language L is positive 
if it is built up from atomic formulas using only conjunction, disjunction and 

universal or existential quantifiers. The most important property of positive 

formulas is that their truth is preserved under surjective homomorphisms. 



Vol. 22, 1975 BANACH SPACES 59 

Moreover,  Lyndon ' s  Theorem asserts that if ~ and ~ are structures for  L and 

if every positive sentence true in ~r is true in 9 ,  then there exist e lementary 

extensions ,d '  of ,d and ~ '  of :~ such that .~ is a homomorphic  image of ,d' .  

If E is any Banach space, we will write Pos (E) for the set of positive sentences 

of L which are true in E. 

If E is a Banach space, (with norm p) then the nonstandard hulls of E are 

constructed in the following way: let M be a set-theoretical structure which 

contains E and let *M be any N,-saturated enlargement of M. An element p of 

*E is said to be finite if *p(p)  is finite: p is infinitesimal if *p(p )  is infinitesimal. 

The set of finite elements of *E is denoted by f in(*E),  the set of infinitesimal 

elements by p.(0). The nonstandard hull E is then defined to be the quotient 

space fin(*E)/p.(0),  with quotient map ~ '  f i n ( * E ) ~  E. The norm fi on E is 

defined by letting r be the standard part of *p(p) .  where p is any element of 

f in(*E)  which satisfies ~ ( p ) =  x. 

Nonstandard hulls were first introduced by Luxemberg [10] and have been 

studied by the author and L. C. Moore, Jr. [3] [5] [6] [7]. They arise naturally in 

many parts of nonstandard analysis. The question considered in this paper was 

suggested by the the rather surprising examples of isometries between nonstan- 

dard hulls which were given by the author in [3]. These examples arise when 

the enlargement *.~ has the No-isomorphism property,  which was introduced in 

[3] and which will be of importance in this paper. Recall that *M has the 

~o-isomorphism property (as an enlargement of M) if the following condition 

holds: if .d and ?~ are elementarily equivalent structures with a finite number 

of relations and functions and if the domains, relations and functions of ,d and 

are all internal objects in *M, then .d and ~ are isomorphic. 

Throughout  this paper we let T denote the first order theory with language L 

whose axioms are the sentences of L which are true in every non-trivial 

Banach space. It is easy to check that if sq is any model of T, then (I ~ ] ,  + ~,) is 

a torsion-free, divisible abelian group. Therefore  it is a vector  space over  the 

field Q of rational numbers in a canonical way. Moreover .  the set P.~, is 

absolutely convex over  Q ; that is, if a, b E I .~ I and r, s • Q satisfy f rl + Is I 
I, then 

ra + .~, sb E P~,. 

(For example, the following sentence is a theorem of T: 

Vx Vy Vz Vu Vv  [(Px ^ Py AX = U + U Ay = V + V ̂ Z = U + v)--~ Pz]. 

This implies that ' a + ~, �89 b E P~, whenever  a and b are in P,,.) We say that an 
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element a of IM[ is finite if there is a positive integer n such that (l/n)a is in 

P~. The convexity property of P~, insures that the set of finite elements of I M I 

forms a vector subspace of (]MI, +. ,)  over Q. In particular the set of finite 

elements of IM] is the domain of a substructure of M which we denote by 

f in(d) .  

LEMMA I. lfM is a model of T. then fin (M) is an elementary submodel of M. 

PROOF. Let M be a model of T and let Ar be the set of finite elements of M. 

Let K be a cardinal number which is greater than the cardinality of M; in 

particular K is uncountable. 

The fact that M is a model of T insures that for each positive integer n there 

exist x , , . . . , x ,  in A~ such that 

l<=i<j_-<n implies / ( x , - x i ) E P ~ .  

(Let x , , - . . ,  x, be appropriate multiples of an element x of P~ which satisfies 

2x~ P~.) Using the upward Lbwenheim-Skolem Theorem, there is an extension 

of M and subsets B and X o f ] G ]  such that 

(a) C~, B) is an elementary extension of (M, At) 

(b) X,B and I~ l  have cardinality K 

(c) X C_ B and if x,y are distinct elements of X, then ~(x -  y)lE/3~ for 

every positive integer n. 

Condition (a) insures that 6~ is a model of T and that B is a vector subspace 

of (1~[, +.~) over Q. Let ~ '  be the substructure of ~ whose domain is B. 

Condition (a) implies that ~ '  is an elementary extension of fin (M). Let B~ be 

the set of finite elements of [Y3[. Condition (a) insures that B~C_ B and 

conditions (b) and (c) insure that the quotient vector space B/B~ has cardinality 

K. Therefore B/Br and [~ ]/BI both have dimension K as vector spaces over Q. 

It follows that there is a vector space isomorphism f from B onto I~  I which is 

the identity when restricted to B~. But P~ is contained in B~ and [ ~ ] ~  B~ is 

contained in Q~. Therefore f is an isomorphism of .~' onto ~. 

That is, fin (M) and M have elementary extensions which are isomorphic by a 

mapping which is the identity on ffin(~)[. It follows that f in(d)  is an 

elementary submodel of M, completing the proof. 

In many ways Lemma I is the key to the results which follow. The analogous 

statement for stronger languages than L, such as those used in [97 [15], can be 

shown to be false. For such languages the truth of positive formulas is not 

necessarily preserved on passing from E to a nonstandard hull or Banach space 

ultrapower of E. 
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2. Nonstandard hulls 

PROPOSITION l. If E. is a nonstandard hull of the Banach space E, then 

Pos(E)  C_ Pos(/~). 

PROOF-. Let *.4/ be the N,-saturated enlargement used in constructing E. If 

M = ( E ,  +,.:,Pv,,QE) is the L-structure associated with E, then * ~ =  

(*E, * + ~:, *P~, *Qv,) is an elementary extension of M, by the transfer principle. 

Noting that *P~: = {p E *E I*P (P) <= 1}, we see that *p(q) is finite if and only if 

there is a (standard) positive integer n with ( l /n)q  E *PE. Therefore, Lemma l 

implies that the substructure of *M with domain fin(*E) is an elementary 

substructure of *,~ - -  indeed, that substructure is just fin(*~r Since E_C 

fin(*E), it follows that fin(*M) is an elementary extension of M. Now the 

mapping 7r: fin(*E)--~ E is easily seen to be a homomorphism of fin (*~t) onto 

E. The desired result follows immediately from the fact that truth of positive 

sentences is preserved under surjective homomorphisms. 

PROPOSITION 2. Let E ,F  be Banach spaces in d~ and let * ~  be an N~- 

saturated enlargement of ~ which has the ~to-isomorphism property. If 

Pos(E)  _C Pos(F),  then the nonstandard hulls of E and F constructed using 

*tit are isometrically isomorphic. 

PROOF. Since Pos ( E ) C  Pos (F), Lyndon 's  Theorem implies that there exist 

L-structures ~r and :~ such that ~r is an elementary extension of E, ~ is an 

elementary extension of F and there is a homomorphism f of ~r onto ~.  It may 

be assumed that the cardinality of ,~r and ~ is max(card E, card F) and 

therefore we may take ,~r ~ and f to be elements of d/. 

Now the transfer principle insures that *f is a homomorphism of *~1 onto 

*~/2. Since * ~  is elementarily equivalent to E, and hence to (*E,*+~,  

*P~-,*QE) = ~, the fact that *,~ has the No-isomorphism property insures that 

*~r and ~ are isomorphic. Similarly *~  is isomorphic to ~ = 

(*F, * + ,,, *P~, *Q~). Therefore *f induces a homomorphism g of ~' onto ,~. The 

fact that g maps *Pv_ into *Pv and preserves addition implies that g maps finite 

elements of *E to finite elements of *F and maps infinitesimals to infinitesi- 

mals. If p E * E  is infinite, so that ( l /n)p ~*Q~ for all standard n, then 

( l /n )g(p)  E *Q~- for all such n. Therefore, g(p)  is infinite in *F whenever p is 

infinite in *E. A similar argument shows that g(p)  is infinitesimal only when p 

is infinitesimal. We may therefore define ~ from E onto P by 

~,(x) = rrv(g(p)) where ~'E(p) = x. 
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It is immediate that ~ is a bijection and preserves addition and that ~ maps the 

unit ball of ~" onto the unit ball of F. A simple argument shows that ~ is a linear 

isometry, completing the proof. 

THEOREM 2. Let *M be an l,l,-saturated enlargement of  M with the l,lo- 

isomorphism property. For any two Banach spaces 17,, F in M the following 

conditions are equivalent, where IF, and F are the nonstandard hulls constructed 

using *,t/I : 

(i) F, and I ~ are isometrically isomorphic. 

(ii) P o s ( E ) =  Pos(F).  

(iii) For some Banach space H, Pos (/~)U Pos ( F ) C  Pos (H). 

(iv) For some Banach space H, Pos (E)U  P o s ( F ) C  Pos(H).  

PROOF. The implications (i) ::), (ii) and (ii) ~ (iii) are obvious. Proposition i 

yields (iii) f f  (iv) immediately. 

Now suppose that E, F. H satisfy condition (iv). If we knew that H were in rid, 

then Proposition 2 would imply that E" and F" were each isometrically 

isomorphic to/.7/and hence to each other. If H is not in M, it suffices to show 

that there is a Banach space H'  in M which satisfies P o s ( H ' ) =  Pos(H).  

Moreover, since M contains sets of cardinality 2"., we need only show that 

there is a Banach space H '  of cardinality 2". with Pos (H') = Pos (H). Actually 
such an H '  exists which is an elementary subspace of H (relative to formulas in 

L). To obtain such an H',  construct inductively a closed subspace Ha of H for 

each countable ordinal a such that 

(a) Ha has cardinality 2"* for each a 

(b) Ho C_ He whenever a -</3 

(c) for each a there is an elementary substructure Ma of H (for the 
language L) such that 

n o  ___ I,~o I c_ Ho+, .  

(To construct H~, ,  let Mo be an elementary substructure of H such that IMol 

contains Ha and has cardinality 2".. Let Ha§ be the closure of I ~ l .  At limit 

ordinals /3, let He be the closure of U{Ho la </3}.i 

Letting H'  be the union of Ha for all countable a will produce the desired 

result: any sequence in H'  is contained in some He, so H'  is a closed subspace 

of H; evidently H'  has cardinality 2".; H '  is an elementary substructure of H 

since H '  is the union of the chain of structures M~ described in (c). This 
completes the proof. 



VOI. 22, 1975 BANACH SPACES 63 

We note here that the proof of Theorem I is now complete: If E is a 

nonstandard hull of E and if F is a nonstandard hull of F (possibly constructed 

using different N,-saturated enlargements) and if L" and P are isometrically 

isomorphic, then 

Pos (E) _C Pos (/~) = Pos (F) _D Pos (F) 

by Proposition 1. Therefore E, F satisfy condition (ii) of Theorem 1. Con- 

versely, suppose E, F satisfy that condition. Take *M to be an N,-saturated 

enlargement of an M containing E and F, such that *M has the 1%-isomorphism 

property (*.~ exists by [3, theor. 1.3].) Then the nonstandard hulls of E, F 

constructed using *M are isometrically isomorphic, by Theorem 2. 

COROLLARY 1. Let *Jbt be an l<,-saturated enlargement of eR which has the 

1%-isomorphism property. If E is a Banach space in ~ ,  then Pos (/~) is the 

largest set S o [  positive sentences o [ L  such that Pos (E) C_ S and [or some 

Banach space H, S C Pos (H). In particular, Pos (/~) depends only on Pos(E) 

and not on ~ or *.//. 

PROOF. The set Pos(E) satisfies the stated condition since E is a Banach 

space and Pos (E) C_ Pos (E) by Proposition 2. Conversely, say S is a positive 

set of sentences and for some Banach space H Pos (E)C S C Pos (H). By the 

argument given in the proof of Theorem 2 we may assume that H is in ~ .  By 

Proposition 2, E and /-t are isometrically isomorphic so that 

S C Pos(H) C Pos(/g/)= Pos(E) 

as claimed. 

REMARK. Call a set S of positive sentences of L maximal if there is a 

Banach space E such that Pos(E) = S and and for each Banach space H with 

Pos (H) _D S we actually have Pos (H) = S. Corollary 1 asserts that if ~" is a 

nonstandard hull constructed using an ~,-saturated enlargement with the 

1%-isomorphism property, then Pos (1~) is a maximal set of positive sentences. 

Moreover, suppose *M is a fixed l<,-saturated enlargement with the 1%- 

isomorphism property, of some fixed structure M. By the argument given in the 

proof of Theorem 2, for each Banach space H there is a Banach space H'  in 

with Pos (H)=  Pos(H'). In particular, if Pos (H) is maximal, then 

Pos (/2/,) = Pos (H') = Pos (H) 

by Corollary 1. Therefore each maximal set S of positive sentences is realized 

as Pos (E') for some nonstandard hull constructed using the fixed *.,~. Using this 
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and Theorem 2 we see that there is a l-1 correspondence between isometric 

isomorphism types of nonstandard hulls constructed using * ~  and maximal 

sets of positive sentences in L. 

EXAMPLE. There is a Banach space E such that P o s (E )  is not maximal. 

Namely,  let {r, } be a sequence of rational numbers decreasing (strictly) to 1 and 

let E be the 12 sum of the family {/r,(2)} of 2-dimensional spaces. (See [2, p. 35]). 

Since 12 and each /,,(2) are strictly convex,  so is E. In particular, no 

2-dimensional subspace of E is isometrically isomorphic to/~(2). However  it is 

easy to see that any nonstandard hull E of E must contain a subspace which is 

isometrically isomorphic to L(2). 

Now there is a positive sentence ~r with the property that cr is true in the 

Banach space H if and only if H contains a 2-dimensional subspace which is 

isometrically isomorphic to L(2). Namely,  tr may be taken to be 

3x  3y  (Px ^ Qx ^ Py ^ Qy ^ P ( x  + y)^  Q ( x  + y)A 3Z(X = y + z ^ Pz A Qz)).  

Then ~ asserts the existence of x and y of norm equal to 1 such that both x + y 

and x - y  have norm I. 

For the space E constructed above, t rZ P o s ( E )  but tr • P o s ( E )  for  any 

nonstandard hull E of E. It follows that Pos (E)  is not maximal. 

3. Banach space ultraproducts 

In [8] an ultraproduct construction for Banach spaces was introduced; the 

construction can be described as follows. Given a family {Ei l i E I} of Banach 

spaces and an ultrafilter D on I, let ~ be the ordinary ultraproduct D-prod 

(E, l i E I} of the Banach spaces E, as structures for the language L. Note that 

~r is a model of T. Call an element a of I~r infinitesimal if ( l / m ) a  E P~ for 

every positive integer m. The absolute convexi ty  of P~, over  Q insures that the 

infinitesimal elements of I~r form a vector  subspace of ( l ~ l ,  +~,). Let  E be 

the quotient space of fin(~r by the subspace of infinitesimal elements, and let 

v : f i n ( ~ r  E be the quotient mapping. It turns out that there is a norm p on E 

with 

and 

v(P~) = {x ]p(x)  -< l} 

.(0~, n Ifin ~ l )  = {x Ip(x)  --> 1} 

and under which E becomes a Banach space (as long as D is countably 

incomplete). This Banach space E is the Banach space ultraproduct of the 
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family {E, l i ~ I} by the ultrafilter D. If E, = F for every i E / ,  then E is called a 

Banach space ultrapower of F. Since E is a homomorphic image of fin(M) 

under the mapping v, any positive sentence true in M is true in E by Lemma !. 

From this fact and the basic property of ordinary ultraproducts in model 

theory, the following result is immediate. 

PROPOSITION 3. Let E be the Banach space ultraproduct of the [amily 

{E~ I i E I} o[ Banach spaces by the ultra]ilter D and let tr be a positive sentence 

o iL .  I[ {i E llcr is true in E~}E D, then cr is true in E. 

In particular irE is a Banach space ultrapower of F, then Pos (F) C_ Pos (E). 

THEOREM 3. For each set-theoretical structure ~ of nonstandard analysis 

and each cardinal number K there is an ultrapower enlargement of ~ which has 

the K-isomorphism property. 

PROOF. We may assume that r is greater than the cardinality of any set in ~ .  

In that case any ultrapower extension of J/  which has the r-isomorphism 

property will automatically be an enlargement, since it is r-saturated by the 

argument given in [3, theor. 1.5]. 

Shelah [13] has shown that there exists an ultrafilter D on a set I which 

satisfies the following condition: if (M~[i E I) and (~, l i E I) are families of 

structures for the same first order language Lj and if the cardinalities of each 

I ~  I, each I,~3, I and the set of non-logical symbols of L~ are all less than r, then 

the ultraproducts D-prod (M~li E I) and D-prod (~i l i  E I) are isomorphic 

whenever they are elementarily equivalent. (Shelah does not specify that the 

cardinality of L~ must be bounded, but this requirement is necessary.) Let * ~  

be the ultrapower extension of ~ constructed using the ultrafilter D (see [10] 

for this construction). 

Now assume that M and ~ are elementarily equivalent structures for a 

language L~ which has fewer than x non-logical symbols and assume that the 

domains, functions and relations of M and ~ are all internal objects in the 

extension *~t of ~ .  It must be shown that M and ~3 are isomorphic. Let A and 

B be sets in M such that the internal sets I M[ and I~ l  satisfy [MI_C*A and 

I ~ ] C  *B. Since IMI is internal there exists a function f : I - - - , {XIX C_ A} such 

that I M ] corresponds (via the construction of *~t) to the ultraproduct element 

f/D. (Here f /D is the D-equivalence class of functions from I into M which 

contains f.) Similarly there is a function g: I - - - , {Y IYC_  B} such that glD 

corresponds to the internal set 1~ 1. Given a non-logical symbol s of Lt there 

are functions f, and g, from I into M such that the internal objects sa and s~ 

correspond to f , /D and g,/D respectively. Moreover, if s is (for example) an 
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n-place predicate symbol, then [, and g, may be chosen so that, for each i E I, 

f ,(i) is an n-ary relation on f ( i )  and g,(i) is an n-ary relation on g(i). Similar 

assumptions may be made in respect to the function symbols of L,. 

Now let ~t~ be the L~-structure whose domain is [(i) and such that for each 

non-logical symbol s of L,, s~, = f,(/). Let ~, be the structure with domain 

g(i) and such that s~, = g,(i) for each symbol s. It follows that M is isomorphic 

to the ultraproduct D-prod (~t, [i E I) and ~ is isomorphic to D - p r o d ( ~  1i 

I). Since the domain of each M, or ~, is a set in M, it has cardinality less than K. 

Therefore, the basic property of the ultrafilter D insures that ~r and ~ are 

isomorphic, completing the proof. 

Suppose now that E is a Banach space in M and that *M is the ultrapower 

extension of M constructed using an ultrafilter D. Then *E corresponds to the 

ultrapower of E by D. Therefore the nonstandard hull of E constructed using 

this *M is isometrically isomorphic to the Banach space ultrapower of E by the 

ultrafilter D. This connection between nonstandard hulls and Banach space 

ultrapowers leads to the following analogue of Theorem I. 

THEOREM 4. The following conditions are equivalent for Banach spaces E, F 

over the scalar field of real numbers : 

(i) E and F have isometrically isomorphic Banach space ultrapowers. 

(ii) There is a Banach space H such that P o s ( E ) U  Pos(F)C_ Pos(H).  

PROOF. The implication (i) :> (ii) follows from Proposition 3. If E and F 

satisfy (ii), let *2/ be an ultrapower enlargement with the ~l,-isomorphism 

property of some ~ which contains E and F, obtained using Theorem 3. By [3, 

theor, i.5] *~t is an ~l,-saturated enlargement of ~ .  By Theorem 2 the 

nonstandard hulls of E and F constructed using * ~  are isometrically isomor- 

phic, and these are the desired Banach space ultrapowers. 

Another interesting consequence of Theorem 3 and the use of Banach space 

ultraproducts is the following Compactness Theorem for sets of positive 

sentences of L and Banach space models. 

THEOREM 5. I f  Y. is a set of positive sentences of L and for each finite subset 

E' of  Y. there is a Banach space H with E' C_ Pos (H), then there is a Banach 

space H with E C_ Pos(H).  

The argument by which Theorem 5 is derived from Theorem 3 is familiar and 

will be omitted. It should be noted that there is no analogous Compactness 

Theorem for arbitrary sets of sentences in L (see [4]). 

It follows from Theorem 5 that the condition 
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(i) There exists a B a n a c h  space H such that  Pos ( E )  U Pos ( F )  C_ Pos  ( H )  

(which  has  been  s h o w n  to be e q u i v a l e n t  to the  e x i s t e n c e  o f  i s o m e t r i c a l l y  

i s o m o r p h i c  n o n s t a n d a r d  hulls  or  B a n a c h  s p a c e  u l t r a p o w e r s  o f  E and  F )  is 

equ iva l en t  to the cond i t i on  

(ii) For each tr, in Pos ( E )  and each or, in Pos ( F ) ,  there is a B a n a c h  space 

H such that  {try, tr2} _C Pos (H) .  

REMARK. Whi le  the  r e su l t s  in this  p a p e r  have  been  r e s t r i c t e d  to  real  B a n a c h  

s pace s ,  they  can  eas i ly  be e x t e n d e d  to a n a l o g o u s  resu l t s  fo r  c o m p l e x  B a n a c h  

spaces .  All  that  is n e c e s s a r y  is to e x p a n d  the l anguage  L by  add ing  a una ry  

func t ion  s y m b o l  which  is i n t e r p r e t e d  as  the  o p e r a t i o n  of  sca la r  mul t ip l i ca t ion  

by  ~ / ~  1. 
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